• mobile_menu_1_icon


    • Certifications

    • Programs

  • mobile_menu_2_icon


  • mobile_menu_3_icon


  • mobile_menu_4_icon


Mobile Header Background

How to Manage AI Project’s?

By John White Last Updated on Jun 14, 2021

Living in the posh area, I have the opportunity to be exposed to the latest and greatest artificial intelligence (AI) experiences, like the Amazon Go Store, which knows when you pick up an item in the store for checkout and when you put one back, all culminating in an app that simplifies your checkout experience with automation.

These are the types of AI experiences that businesses hope for and can attain if they harness AI not only for the rewards but also with an eye on managing the risks and ensuring their readiness.

Alex Fly, CEO of AI solution provider Quick Path, petitions the “three Rs” of artificial intelligence: Reward, risk, and readiness.

“What CIOs and other individuals at the C-level [in organizations] should note; is AI a methodology that uses an experimental framework”?

Suggested Read: Top artificial intelligence technologies

When you implement AI, whether it is operating on big data, traditional data, or a blend of the two, the testing process is iterative. You begin with small steps, and you test the accuracy of your data and your algorithms. You do this by determining how closely data and algorithms capture the realities of your business and deliver the insights that you want.

In some cases, the experiment produces result right away. In other cases, there is a need for continuous improvement. In still other cases, the experiment doesn’t work.

“The key is to pilot your AI-first,” said Fly. “Measure your results against your benchmarks and your expectations. If your first try doesn’t achieve what you want, improve those models. Perfecting an AI application is an iterative process of continuous improvement. By incrementally enhancing your results, you are lowering your risk of making inaccurate results.”

AI life cycle

The concept of iterative testing can have varying impacts on projects. For example, if the velocity of data in a given business process you are adapting for AI is rapid, you can iteratively test and re-deploy quickly; however, if the business process and flows of data are slow, the iterative AI testing cycle will be slow, too, which can try the patience of upper management and project sponsors.

“One significant key to AI success is transparency”.

So, if the AI testing process by necessity must be slow, management should be informed of it upfront. If the AI project is successfully implemented and it impacts your customers’ expectations of privacy, such as an insurance company contracting with third parties to obtain customer mileage information to compute auto premiums, consumers should be informed of the practice and the AI upfront—and not in the fine print of policies.

Also Read: 5 roles of artificial intelligence in business

“There is also the question of IT readiness,” explains Fly. “Do you have the right skill sets on your IT and data science teams to support and monitor the AI, and to implement it on websites, in mobile apps, and systems? With AI’s great rewards come great responsibilities. These include managing risks and also assuring your readiness as you reap the benefits of AI.”

Fly continues, “If you’re impacting in new ways how your customer interacts with you or how people work within your organization with an AI app, customer sensitivity and employee readiness for an AI introduction should be assessed.”

“A sound method with some new AI is one of ‘crawl, walk, and then run,'” said Fly. This lets you know if the organization is ready for the change you want to introduce. You and your stakeholders should also verify that the business case the AI was designed for will be able to be met, and if you have the right data for the AI algorithms to operate on.